
A Fast and Robust Text Spotter

Siyang Qin Roberto Manduchi
Computer Engineering Department, University of California, Santa Cruz

siqin@soe.ucsc.edu; manduchi@soe.ucsc.edu

Abstract

We introduce an algorithm for text detection and local-
ization (“spotting”) that is computationally efficient and
produces state-of-the-art results. Our system uses multi-
channel MSERs to detect a large number of promising re-
gions, then subsamples these regions using a clustering ap-
proach. Representatives of region clusters are binarized
and then passed on to a deep network. A final line group-
ing stage forms word-level segments. On the ICDAR 2011
and 2015 benchmarks, our algorithm obtains an F-score of
82% and 83%, respectively, at a computational cost of 1.2
seconds per frame. We also introduce a version that is three
times as fast, with only a slight reduction in performance.

1. Introduction
Systems that can automatically detect the presence of

text in an image (text spotters) may find application in mul-
tiple practical scenarios, such as video surveillance, foren-
sic, video annotation, mobile OCR. Our main interest in text
spotting stems from its potential application as an assistive
device for blind people. Being able to detect and read visi-
ble text (e.g., a name tag at a door, a wayfinding sign in an
airport, the name of a store posted above its entrance) could
provide a blind traveler with enhanced environment aware-
ness and better self-confidence. By supporting independent
travel, this technology could have direct consequences in
terms of education, employment, socialization and recre-
ation for the visually impaired community.

To access text, blind users could rely on the camera of
their hand-held smartphone, or on a wearable camera that
is tethered or wirelessly connected to the smartphone. It is
important to note that the task of detecting and reading a
posted piece of text is in fact a cooperation between the us-
er who is maneuvering the camera, and the system, which
provides feedback to the user (for example, via acoustic in-
terface or synthetic speech). In a typical situation, the user
would first detect the presence of text (perhaps serendipi-
tously, or after intentionally exploring the scene with the
camera). It is not critical that the system be able to read the

text at this point: in fact, the image could have low resolu-
tion if the text is seen from a distance, or the text could be
only partially framed, making reading difficult or impossi-
ble. Upon being informed by the system that text has been
detected, the user could move closer to it and try to take a
well-framed, well-resolved snapshot, which could then be
processed by an actual text reader (OCR). Non-visual inter-
faces could be used to help the blind user in this task. This
operation trades reading accuracy for redundancy: as long
as the user is able to keep the text within view of the camer-
a, and the text spotter can reliably detect and localize text in
the video frames, a large number of images containing the
text are available for OCR, maximizing the chance that at
least one of these images can be read correctly.

The system presented in this contribution focuses sole-
ly on detecting and localizing text in an image, deferring
reading to later in the pipeline. High priority was given to
efficiency (computational speed) and of course performance
(as measured by standard criteria [23]). At a speed of 1.2
seconds per image (VGA size), our text spotter achieves
F-scores of 82% and 83% on the ICDAR 2011 and 2015
benchmarks, respectively. For comparison, the published
algorithm with best reported results [27] achieves an F-
score of 0.80 on both data sets at much lower speed. A
faster version of our algorithm (running at 0.38 seconds per
image) results in F-scores of 0.80 and 0.79, respectively.

The general structure of our algorithm, shown in Fig. 1 is
similar to that of other successful systems presented in the
literature, with some important differences. We first process
the input color image with multi-channel MSER [14], using
a very conservative threshold. We then carefully prune the
ensemble of resulting extremal regions; this is a critical step
to reduce the computational cost of all subsequent modules.
Our pruning procedure is an original contribution of this pa-
per. The remaining MSERs are then resized to fit 32 × 32
bounding boxes, and fed to a convolutional neural network
(CNN). Unlike standard approaches that use the grayscale-
valued array as input, in our work the input to the CNN
is a binary indicator mask (see Fig. 2). Our experimental
results show that this simple “trick” can increase classifica-
tion accuracy significantly. Rather than training the CNN

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:55:12 UTC from IEEE Xplore. Restrictions apply.

MSER Clustering
Pruning

Resizing
Binarization

CNN

Line
grouping

INPUT
OUTPUTHeat map

Heat map

Compound
patches

Figure 1. The overall structure of our algorithm. Multichannel MSERs (Stage I) are thinned out through clustering and pruning (Stage
II), then resized and binarized before being fed to a CNN classifier (Stage III - classification results are encoded by the color of the frame
around each patch.) The compound patches that have been classified positively are then grouped into text lines (Stage IV).

on individual characters (synthetically produced or manual-
ly segmented), as is typical for similar algorithms, we mine
positive and negative examples from training data sets that
are only labeled at the word level. The resulting positive ex-
amples may contain digrams and sometimes other n-grams;
this is not a problem, as our goal is word-level detection and
labeling, rather than individual character recognition. Final-
ly, the score assigned by CNN to the individual regions is
used to guide a simple but effective line grouping algorith-
m. Calibration of the individual system components is per-
formed using a metric of precision/recall that is specifically
designed for text spotting.

2. Related Work

Text detection and localization methods have been tradi-
tionally grouped in two main categories. The first catego-
ry contains sliding window approaches [22, 9, 27, 10, 2, 6,
21, 10]. Sliding window analysis has been a cornerstone of
computer vision since its infancy. It is a well understood
technique with remarkable robustness to noise and to unde-
sired effects such as disconnected strokes. Unfortunately,
its computational cost is usually high, considering that mul-
tiple size windows are normally needed.

Methods belonging to the second group extract candi-
date text characters based on local characteristics. Stroke
width transform (SWT) [5] and maximally stable extremal
regions (MSER) [14, 19] are among the most popular ap-
proaches. Such methods allow one to concentrate only on
the more promising candidate regions, but are quite sen-
sitive to noise and blur. SWT finds character candidates
by grouping pixels with similar stroke width into connect-
ed components, where stroke widths are computed from al-
most parallel edges. MSER, an universal tool used in mul-

tiple applications of computer vision, has also been shown
to work well for the task of identifying text characters. For
example, Neumann and Matas [15] proposed a method to
perform efficient sequential selection from the set of ex-
tremal regions in the image to obtain character candidates.
Huang et al. [7] introduced the Stroke Feature Transform,
which extends the Stroke Width Transform idea by consid-
ering color for increased robustness, along with two novel
Text Covariance Descriptors used to train a classifier. Chen
et al. [1] enhanced the MSER algorithm by adding Canny
edge cues, with the goal of increased robustness to blur and
noise.

Some works attempt to combine the advantages of
sliding-window and of connected component methods.
Neumann and Matas [17] proposed a novel approach to
character detection. An image region is treated as candidate
character if it contains strokes of specific orientations in a
specific relative position. The number of candidate charac-
ter regions is reduced by three orders of magnitude respect
to traditional sliding-window approaches. Zamberletti et al.
[26] proposed a hybrid system that generates a text confi-
dence map using a sliding-window classifier based on fast
feature pyramid [4], then remove false positives using M-
SERs.

Recent years have witnessed tremendous progress in un-
supervised feature discovery and deep learning; these tech-
niques have been applied to almost every area of com-
puter vision, and scene text localization is no exception.
Rather than rely on hand-designed features, deep convo-
lutional neural networks (CNN) [13] use hierarchical and
over-complete features learned from large training data set-
s. Use of CNN has enabled substantial improvement in text
detection and localization accuracy. For example, Wang et

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:55:12 UTC from IEEE Xplore. Restrictions apply.

al. [22] use a sliding window to extract candidate region-
s that are then fed to a CNN (with the features of its first
convolutional layer trained in an unsupervised manner [3]).
Huang et al. [8] use MSER to find candidate regions that are
then classified by a CNN similar to that of [22]. Zhang et
al. [27] rely on the spatial symmetry that is charateristic of
character groups, then use CNN to remove false positives.

For more comprehensive surveys, the reader is referred
to [12, 20, 24].

3. Method
As customary for text spotting [2], we structure our al-

gorithm as a cascaded classifier, with the initial stages de-
signed to have high recall rate. Our system (Fig. 1) can
be divided into two main components: the first componen-
t produces a set of rectangular patch, each weighted by a
confidence value of being contained in a text area (Stages I
to III); the second component groups these areas into linear
chains – tentative “words” (Stage IV).

3.1. Stage I: MSER Segmentation

The first stage of our algorithm is multi-channel MSER
segmentation. MSERs [14], along with Stroke Width Trans-
form, is widely used to identify promising regions in mod-
ern text spotters. It is particularly suited to discovery of
high-contrast regions such as text characters. We employ
very conservative parameters for MSER computation: us-
ing the terminology of [14], an extremal region Qi is deter-
mined to be maximally stable if the incremental area ratio
|Qi+1\Qi−1|/|Qi| is smaller than τ (τ = 0.25 in our imple-
mentation). We compute MSERs with both polarities (dark
on bright and vice-versa) on 7 image channels: R, G, B,
grayscale, H, S, V. MSERs that contain fewer than 30 pix-
els, or with anomalous format ratio (less than 0.3 or larger
than 3) are rejected.

While in many cases a character is well segmented by
one or more MSERs, in some situations no MSER can be
found that correctly encompasses just one full character.
For this reason, several authors (e.g. [8]) have proposed
techniques that modify or subdivide these regions, with the
purpose of localizing individual letters. This may be neces-
sary when the exemplar set used for training contains indi-
vidual characters (e.g., synthetically generated). We don’t
make this assumption in our system: positive exemplars are
mined directly from the MSER regions, and thus may con-
tain digram or other n-grams. Consequently, we don’t need
to modify the regions produced by MSER in any way (ex-
cept for reshaping them to a common 32× 32 size in Stage
III.)

3.2. Stage II: Region Clustering and Pruning

MSER segmentation produces a large number (on aver-
age, 3151 per image on ICDAR benchmarks) of possibly

Figure 2. Some resized binary patches fed to CNN, together with
their original grayscale counterpart. Note the presence of a trigram
and of a four-gram.

overlapping rectangular image patches. While it would be
possible to pass each one of these patch on to the classifier
(Stage III), the computational cost would be prohibitive. We
thus need a method to weed out the least promising patches.

Our criterion for clustering and pruning is guided by two
empirical observations. The first observation is that actual
characters tend to fill their rectangular bounding box1 more
than spurious MSERs. We embody this notion by a sim-
ple measure of fullness (ratio of the area of the MSER to
the area of its rectangular bounding box). Note that oth-
er features describing the shape of the MSERs have been
used in previous work (e.g.[15]). Measuring these features
on all detected MSERs, however, would be computational
demanding. The second observation is that multi-channel
MSERs tend to cluster around actual text characters, as re-
vealed by observation of the heat map formed the MSERs in
most images (see Fig. 1). In this context, a heat map simply
assigns a value to each pixel equal to the number of MSERs
that overlap on that pixel.

We find clusters of overlapping MSERs’ bounding box-
es, possibly pruning out small clusters, and extract one clus-
ter representative based on the fullness measure. More pre-
cisely, we create a graph with the MSERs as nodes; two n-
odes are linked by an edge if the Jaccard index between the
corresponding MSERs’ bounding boxes is larger than 0.8
(where the Jaccard index of two sets is the ratio of the inter-
section to the union of the sets). Note that this graph can be
computed very efficiently using a sweep line and an interval
tree. The connected components of this graph are comput-
ed. Optionally, connected components with a small number
of components can be removed; for example, our “fast” im-
plementation prunes away all clusters containing less than 3
nodes. Finally, the number of MSERs is reduced by select-
ing one representative MSER per cluster, and specifically
the one with highest fullness in the cluster (see Fig. 3). This
operation reduces the average number of regions to 1392
per image (without pruning), and to 300 per image (when
clusters with less than 3 components are removed).

1By “bounding box” of a region we mean the smallest rectangle con-
taining the region with sides pairwise parallel to the image axes .

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:55:12 UTC from IEEE Xplore. Restrictions apply.

Figure 3. MSERs within a cluster centered at the red rectangle (on-
ly a few shown). The MSERs are ordered in decreasing value of
fullness. The MSER to the left is chosen as the cluster representa-
tive in Stage II.

3.3. Stage III: Region Classification

Patches produced by Stage II are resized to a common
square size of 28 × 28 pixels, then zero-padded to 32 × 32
pixels squares and fed to a convolutional neural network
(CNN). We use a standard CNN structure [22, 8] with two
convolutional layers (conv1 and conv2) containing 96 and
256 kernels respectively. Kernels in conv1 have size of 8×8
pixels; those in conv2 have size of 2 × 2 pixels. Each con-
volutional layer connects to a rectified linear unit (ReLU)
and to a max pooling layer. The first pooling layer (pool1)
performs 5 × 5 max pooling, the second one (pool2) per-
forms 2× 2 max pooling. The 2× 2× 256 output from the
last pooling is passed on to a fully connected layer to ob-
tain a 500 length feature vector which is feed into the SVM
classifier, producing the final classification score. Training
is fully supervised from exemplars with binary labels.

Unlike other approaches that use character-level exem-
plars for training (either hand-segmented or synthetically
generated), our training samples are obtained with exactly
the same method as described in Stage I, from a data set
that was hand-segmented at the word level (as available in
the ICDAR 2011 and 2015 text localization data sets). We
mine positive samples from the training portions of these
datas set by first running multi-channel MSER (Stage I, but
without the clustering/pruning procedure of Stage II), then
treat each resulting rectangular region (bounding box) as a
positive sample if (1) this region is substantially contained
within a word-labeled rectangle, and (2) its height is similar
to the rectangle’s height. More precisely, the region must
overlap with the word-labeled rectangle by at least 80% of
its area, and its height must be between 60% and 120% of
the height of the word-labeled rectangle (see Fig. 4). If ei-
ther condition is unsatisfied, the region is treated as a nega-
tive sample. Overall, we obtained approximately 60K pos-
itive samples, and seven times as many negative samples,
mined from the training portions of the ICDAR 2011 and
2015 text localization data sets. The negative set is then

Figure 4. Mining positive (red) and negative (blue) examples from
an image that was labeled at word level (yellow rectangles). Only
a subset of MSERs are shown on the image for readability.

subsampled to about 110K samples.
The practical importance of not requiring character-level

training is twofold. First, it is arguably easier to hand-
segment whole words from images, rather than individual
characters. Of course, this problem is immaterial if synthet-
ic data sets are created, although the verisimilitude of this
synthetic data to real images may be called into question.
Second, there is no need to pre-process patches which are
suspected to contain multiple characters, an operation that
can be challenging and time-consuming.

In a small but significant departure from standard CNN
classification approaches, we feed the classifier with a bi-
nary image, and precisely with the indicator mask of the
MSER in the patch, rather than using the full grayscale val-
ue range (Fig. 2). We have found that this simple trick
significantly improves results (see Sec.4). While more re-
search is needed to understand the exact reason for this im-
provement, we speculate that the chosen MSER representa-
tives may overcome the effect of blur and poor contrast, and
perhaps remove undesired background clutter that could be
otherwise present in the graylevel patch.

3.4. Stage IV: Text Line Grouping

The last stage of our algorithm groups together patch-
es that passed CNN classification into text lines, and sepa-
rates these groups into “words”. As a first step, we recover
the connected components of MSERs whose representative
was passed on to CNN (Stage II), and create a rectangular
bounding box (“compound patch”) encompassing all such
regions. Each compound patch is assigned the confidence
value given by CNN to the corresponding resized represen-
tative patch. To find text lines, we resort to a sequential vot-
ing strategy with greedy removal. Starting from the com-
pound patch with highest confidence value P0, we examine
all other compound patches; for each other patch Pi, we
compute the angles (within −π/2 and π/2 from the hori-
zontal direction) of three lines: the line joining the tops of
the vertical bisectors of the two patches; the line joining the
midpoints of the vertical bisectors; and the line joining their
bottoms. We found that all three lines need to be considered,
in order to account for rectangle with different sizes. These

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:55:12 UTC from IEEE Xplore. Restrictions apply.

three angles are then quantized into 36 bins; each line con-
tributes one vote to the corresponding bin’s counter, with a
weight that is proportional to the CNN classification score
Pi, divided by the Euclidean distance between the centers of
the two patches. The angle corresponding to the highest bin
counter is selected, defining a line drawn from the center
of the compound patch. The compound patches intersect-
ing this line are ordered based on their horizontal distance
to the patch under consideration, and visited to determine
whether they should be added to the current “text line”. T-
wo variables, containing the average patch width and height
respectively, are updated each time a patch is added to the
text line. A strip is centered on the line, with height equal to
the current average patch height. A visited patch is added to
the line if two conditions are satisfied: (1) the Jaccard index
between the patch’s vertical bisector and the stripe section
aligned with this bisector is larger than 0.5; and (2) the hori-
zontal distance between the visited patch and the last added
patch in the same direction (measured at their closest sides)
is smaller than twice the average patch width. As soon as
a patch is found that does not satisfy condition (2), the pro-
cess is stopped; all patches assigned to the text line are re-
moved, and the process is started again from the remaining
highest confidence compound patch. Finally, line groups
with average patch confidence below a certain threshold are
removed.

Once a line group is formed, the extent of individual
words is determined. Since we don’t perform any lexical
analysis, this operation is performed solely based on the
patches’ spatial characteristics. We first compute the aver-
age distance between consecutive patches; then, we split the
line halfway between any two consecutive patches whose
distance is larger than 3 times this value.

4. Experimental Results
Our text spotter was implemented in C++ using OpenCV

and the Caffe implementation of CNN [11]. Multichannel
MSER was parallelized using OpenMP. The system was
benchmarked on a 3.4 GHz, 4 cores desktop with Nvidia
Geforce GTX 650 GPU, running Linux. The classifier was
trained with the training portion of both the ICDAR 2011
and 2015 data sets.

4.1. Speed

End-to-end computational times for VGA image size are
reported in Fig. 5 and Tabs. 1 and 2. Multi-channel MSER
takes 50 ms. If all MSERs in the image (3151 on average)
are fed into the CNN, a frame is processed in 2.3 s, with 2.1
s used by CNN processing (Stage III). By clustering MSERs
and only retaining one cluster representative per cluster (an
operation that takes 90 ms), only 1392 patches are sent to
CNN on average, reducing the associated processing cost
to 980 ms. If clusters with less than 3 MSERs are pruned

RECALL (%)
60 70 80 90 100

PR
EC

IS
IO

N
(%

)

60

70

80

90

100

S1-3S1-2-3

P1
P2

P3P3
P2
P1

S1-2-3
S1-3

Figure 5. Patch-level evaluation (see Sec. 4.2 for definition of pre-
cision/recall in this context). Red: using binary patches. Blue:
using greyscale patches. S1-3: Stages I and III with no MSER
clustering (end-to-end computational time: 2.3 s/frame). S1-2-3:
Stages I, II and III, with one representative per MSER cluster sent
to CNN but no cluster pruning (1.2 s/frame). P1, P2, P3: prun-
ing away clusters with less than 1, 2 or 3 MSERs per cluster (550
ms/frame, 380 ms/frame, 320 ms/frame respectively).

away (our “fast” implementation in Tabs. 1 and 2), only 300
patches are sent on to CNN, reducing its cost to 210 ms.
Line grouping (Stage IV) takes 30 ms.

4.2. Patch-Level Evaluation

In order to tune the parameters and take design decisions
for all initial steps (Stage I–III, before text line grouping), it
is important to use a metric that allows for patch-level qual-
ity assessment. Unfortunately, the standard word-level met-
ric used in text localization contests [23] would not serve
us well for this purpose. We thus devised a simple preci-
sion/recall2 metric that is specifically designed for patch-
level evaluation. More precisely, we want to be able to
measure how well the characters in the text are covered by
patches that are classified positively by our system, as well
as to measure how well such patches are contained within
word-level segments. Note that use of this metric requires
availability of a character-level hand-labeled data set, along
with word-level segmentation (we use the ICDAR 2015 tex-
t segmentation dataset). Let us emphasize that character-
level labels are never used for training; this data set is only
used to evaluate patch-level performance.

In our metric, recall measures the proportion of ground-
truth characters that have been detected. We found the mea-
sure of recall defined by Zhange et al. [27] appropriate for

2Please note that the terms “precision” and “recall” are being overload-
ed here – they do not have the exact same meaning as the equivalent metrics
used in statistics, yet they convey similar meanings.

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:55:12 UTC from IEEE Xplore. Restrictions apply.

this metric. Specifically, we assume that a given character
has been “detected” if there exists at least one patch classi-
fied positively by our system such that at least 80% of the
character’s bounding box is contained in the patch, and its
height no less than 0.7 times and no more than 1.5 times
the patch’s height. Precision measures the proportion of
patches that have been correctly classified. We assume that
a patch has been “correctly classified” if it is contained for
at least 80% inside a word’s rectangular region, with the ra-
tio of the patch’s height to the word’s region height between
0.5 and 1.3.

Fig. 5 shows patch-level precision-recall values for dif-
ferent variants of our algorithm. We would like to highlight
the fact that selecting the cluster representatives for CNN
classification (rather than classify all MSERs) has a minor
effect on precision (at 64.49%) while reducing recall by ap-
proximately 1% to 94.10% – but also resulting in an almost
twofold increase in speed. As mentioned in Sec. 3.2, the
choice of cluster representative is based on the fullness of
the MSER’s bounding boxes. Indirect evidence of the ap-
propriateness of the fullness measure for representative se-
lection is given by the drop that can be observed (data not
shown in the figure) in recall values if the cluster with me-
dian fullness or with minimum fullness were to be chosen
(93.55% and 88.24%, respectively), with precision remain-
ing stationary (65.03% and 63.07%).

Remarkably, if the full grayscale value is maintained for
the pixels in a patch classified by CNN, recall is reduced
by as much as 5%, with an almost equivalent increase in
precision.

4.3. Word-Level Evaluation

We benchmarked our system with the ICDAR 2011 and
2015 text localization data sets. Comparative results are
shown in Tabs. 1 and 2; please note that the definition of
precision and recall used for these tests [23] are substantial-
ly different from those introduced in the precious section.
The slower version of our systems (without cluster pruning;
1.2 s/frame) produces the highest F-score among all oth-
er algorithms published to date in both data sets. The faster
version (pruning clusters with fewer than 3 MSERs) is three
times as fast, with only slightly reduced F-score.

Figs. 6 and 7 show some good and some unsatisfactory
results of our algorithm. The figures also show the result-
ing heat maps, where each pixel is assigned a value equal
to the number of MSERs overlapping on that pixel, mul-
tiplied by the CNN score assigned to the representative of
the cluster at that pixel (when the representative received
a positive score). Although we don’t use these heat maps
directly in our algorithm, they very well represent the rel-
evance of both classification score and of the presence of
multiple overlapping MSERs as indicators of the presence
of text.

Recall (%) Precision (%) F (%) Time (s/f)
Proposed 77.21 87.59 82.07 1.2

Proposed (fast) 72.88 85.76 78.80 0.38
Proposed (grayscale) 69.66 85.21 76.65 1.2

Zhang et al [27] 76 84 80 60∗

Huang et al [8] 71 88 78 unknown
Yin et al [25] 68 86 76 0.43

Neumann et al [16] 68 85 75 3.1
Table 1. Word-level benchmarking with the ICDAR 2011 text lo-
calization data set [23]. Proposed is our method without cluster
pruning. Proposed (fast) prunes away clusters with less than 3
MSERs in Stage II. Proposed grayscale uses grayscale instead of
binary patches (no cluster pruning). Computational time is mea-
sured in seconds per frame (∗refers to a Matlab implementation).

Recall (%) Precision (%) F (%) Time (s/f)
Proposed 78.67 88.79 83.42 1.2

Proposed (fast) 75.18 84.64 79.55 0.38
Proposed (grayscale) 71.03 83.45 76.78 1.2

Zhang et al. [27] 74 88 80 60∗

Zamberletti et al [26] 70 86 77 0.75
Neumann et al [18] 72 82 77 0.8

Yin et al. [25] 66 88 76 0.43
Table 2. Word-level benchmarking with the ICDAR 2015 text lo-
calization data set [23]. See caption of Tab. 1.

Figure 6. Some successful results from our algorithm. Left: image
with superimposed detected word-level regions. Right: heat map.

5. Conclusions
We have presented an algorithm for text detection and

localization that produces state of the art results while be-

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:55:12 UTC from IEEE Xplore. Restrictions apply.

Figure 7. Examples of misdetections. Left: image with superim-
posed detected word-level regions. Right: heat map.

ing computationally efficient. While the general structure
of the algorithm (MSER computation, CNN classification,
text line grouping) is quite standard, we have introduced a
number of carefully designed improvements that have a sig-
nificant effect in performance and speed. The novel contri-
bution of this work includes a new strategy for thinning out
MSERs that substantially reduces the cost associated with
CNN with only minor loss in performance; a method for
mining positive samples from word-level labeling; and the
use of binarized patches for CNN classification, which is
shown to improve results substantially with respect to grey-
valued patches. While this algorithm is not yet feasible for
real-time implementation on a smartphone, we are current-
ly exploring further possibilities for increased speed-up that
maintain similar quality level.

References
[1] H. Chen, S. S. Tsai, G. Schroth, D. M. Chen, R. Grzeszczuk,

and B. Girod. Robust text detection in natural images with
edge-enhanced maximally stable extremal regions. In 18th
IEEE International Conference on Image Processing (ICIP),
pages 2609–2612. IEEE, 2011.

[2] X. Chen and A. L. Yuille. Detecting and reading text in
natural scenes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages
II–366. IEEE, 2004.

[3] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh,
T. Wang, D. J. Wu, and A. Y. Ng. Text detection and char-
acter recognition in scene images with unsupervised feature

learning. In International Conference on Document Analysis
and Recognition (ICDAR), pages 440–445. IEEE, 2011.

[4] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature
pyramids for object detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(8):1532–1545, 2014.

[5] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natu-
ral scenes with stroke width transform. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2963–2970. IEEE, 2010.

[6] S. M. Hanif and L. Prevost. Text detection and localization in
complex scene images using constrained adaboost algorithm.
In 10th International Conference on Document Analysis and
Recognition, pages 1–5. IEEE, 2009.

[7] W. Huang, Z. Lin, J. Yang, and J. Wang. Text localization
in natural images using stroke feature transform and text co-
variance descriptors. In IEEE International Conference on
Computer Vision (ICCV), pages 1241–1248. IEEE, 2013.

[8] W. Huang, Y. Qiao, and X. Tang. Robust scene text detec-
tion with convolution neural network induced mser trees. In
ECCV 2014, pages 497–511. Springer, 2014.

[9] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.
Reading text in the wild with convolutional neural networks.
International Journal of Computer Vision, pages 1–20, 2014.

[10] M. Jaderberg, A. Vedaldi, and A. Zisserman. Deep features
for text spotting. In ECCV 2014, pages 512–528. Springer,
2014.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolution-
al architecture for fast feature embedding. In Proceedings
of the ACM International Conference on Multimedia, pages
675–678. ACM, 2014.

[12] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. Gomez i
Bigorda, S. Robles Mestre, J. Mas, D. Fernandez Mota, J. Al-
mazan Almazan, and L.-P. de las Heras. Icdar 2013 robust
reading competition. In 12th International Conference on
Document Analysis and Recognition (ICDAR), pages 1484–
1493. IEEE, 2013.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[14] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-
baseline stereo from maximally stable extremal regions. Im-
age and vision computing, 22(10):761–767, 2004.

[15] L. Neumann and J. Matas. Real-time scene text localization
and recognition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3538–3545. IEEE,
2012.

[16] L. Neumann and J. Matas. On combining multiple segmenta-
tions in scene text recognition. In 12th International Confer-
ence on Document Analysis and Recognition (ICDAR), pages
523–527. IEEE, 2013.

[17] L. Neumann and J. Matas. Scene text localization and recog-
nition with oriented stroke detection. In IEEE Internation-
al Conference on Computer Vision (ICCV), pages 97–104.
IEEE, 2013.

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:55:12 UTC from IEEE Xplore. Restrictions apply.

[18] L. Neumann and J. Matas. Efficient scene text localiza-
tion and recognition with local character refinement. arXiv
preprint arXiv:1504.03522, 2015.

[19] D. Nistér and H. Stewénius. Linear time maximally stable
extremal regions. In ECCV 2008, pages 183–196. Springer,
2008.

[20] A. Shahab, F. Shafait, and A. Dengel. Icdar 2011 robust read-
ing competition challenge 2: Reading text in scene images.
In 11th International Conference on Document Analysis and
Recognition (ICDAR), pages 1491–1496. IEEE, 2011.

[21] K. Wang, B. Babenko, and S. Belongie. End-to-end scene
text recognition. In IEEE International Conference on Com-
puter Vision (ICCV), pages 1457–1464. IEEE, 2011.

[22] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end tex-
t recognition with convolutional neural networks. In 21st
International Conference on Pattern Recognition (ICPR),
pages 3304–3308. IEEE, 2012.

[23] C. Wolf and J.-M. Jolion. Object count/area graphs for the
evaluation of object detection and segmentation algorithms.
International Journal on Document Analysis and Recogni-
tion, 8(4):280–296, 2006.

[24] Q. Ye and D. Doermann. Text detection and recognition in
imagery: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 37:1480–1500, 2015.

[25] X.-C. Yin, X. Yin, K. Huang, and H.-W. Hao. Robust tex-
t detection in natural scene images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(5):970–983,
2014.

[26] A. Zamberletti, L. Noce, and I. Gallo. Text localization based
on fast feature pyramids and multi-resolution maximally sta-
ble extremal regions. In ACCV 2014 Workshops, pages 91–
105. Springer, 2014.

[27] Z. Zhang, W. Shen, C. Yao, and X. Bai. Symmetry-based
text line detection in natural scenes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2558–2567, 2015.

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:55:12 UTC from IEEE Xplore. Restrictions apply.

