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Abstract

We present a novel algorithm for geometry and camera
pose reconstruction from image sequences that is special-
ized for indoor Manhattan scenes. Unlike general-purpose
SfM/SLAM, our system represents geometric primitives in
terms of canonically oriented planes. The algorithm starts
by computing multi-planar segmentation and motion esti-
mation from image pairs using constrained homographies.
It then proceeds to recover the relative scale at each frame
and to determine chains of match clusters, where each clus-
ter is associated with a plane in the scene. Motion and
scene geometry (expressed in terms of planar models) are
then optimized using a novel formulation of Bundle Ad-
justment. Compared with other state-of-the-art SfM/SLAM
algorithms, our technique is shown to produce superior
and realistic surface reconstruction for a monocular indoor
scene.

1. Introduction
The problem of joint reconstruction of camera motion

and 3-D scene geometry from images (called Structure from
Motion (SfM) or SLAM, depending on the context) has
been studied for decades. Impressive results have been
obtained, both with vast collections of unordered images
[1, 31], and with video sequences taken from a moving
camera [26, 6]. Rather than attempting to raise the state
of the art in general-purpose SfM or SLAM, this work pro-
poses a new approach for a very specific scenario: indoor
scenes characterized by a Manhattan World (MW) geome-
try [5]. The MW geometry assumption is appropriate for
most indoor environments. Scenes with vertical walls not
intersecting at right angles can be modeled by weak MW
[30], which inherits many of the general properties of the
MW geometry. Of course, there are cases in which the MW
geometry would be inadequate, such as in the presence of
curved surfaces, ramps, or generic objects or people visi-
ble in the scene; in these cases, our technique would not be
directly applicable.

(a) (b)

Figure 1: 3-D textured rendering of an indoor scene from
the output of our algorithm. (a) shows a selected frame
from the input image sequence, and (b) represents the cor-
responding perspective in the reconstructed 3-D scene.

The MW geometry is inherently simple, which facili-
tates reconstruction. For example, by estimating the three
vanishing points (an operation that is feasible in edge-rich
indoor scenes), one obtains the camera orientation with re-
spect to the “canonical” directions (plane normals) [17].
The homography induced on images of the same plane seen
by a moving camera has only three degrees of freedom,
which facilitates multi-planar segmentation and estimation
[30, 15]. The images of multiple parallel and coplanar lines
can be characterized by an invariant descriptor (“character-
istic line”) that enables robust co-planar line clustering [14].
Our work builds on these previous results, and proposes a
technique for SfM/SLAM that makes careful use of the in-
trinsic properties of the MW geometry.

The main characteristic of our system lies in the fact that
all surface elements are represented in terms of canonically
oriented planes. Although we use feature points, matched
across image pairs, to estimate the plane locations and to
validate geometric reconstruction, we never maintain a rep-
resentation of individual points in space. This is a major
departure from traditional reconstruction techniques. The
advantage of this approach is highlighted by our novel for-
mulation of Bundle Adjustment, which uses planar primi-
tives, jointly optimized with the camera poses by minimiza-
tion of a specially designed reprojection error. The output
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Frame-wise Operations 
 - Detect vanishing points 
 - Detect SIFT feature points

Two View Operations (Sec. 3) 
 - MW-constrained multi-planar clustering (Sec. 3.2) 
 - Translation Vector Regression (Sec. 3.3)

Multi-Frame Integration (Sec. 4) 
 - Recovering relative scales (Sec. 4.1) 
 - Cluster chain determination (Sec. 4.2) 
 - Plane-constrained Bundle Adjustment (Sec. 4.3)

Multi-frame integration with plane-constrained Bundle Adjustment

n
Cr(0,k)
0,k

o
,R0, t̄0,

�
d̄0,k

 n
Cr(1,k)
1,k

o
,R1, t̄1,

�
d̄1,k

 n
Cr(2,k)
2,k

o
,R2, t̄2,

�
d̄2,k

 

1

K0,R0, t0, {d0,k} K1,R1, t0!1, {d1,k} K2,R2, t0!2, {d2,k} K3,R3, t0!3, {d3,k}

n
Cr(3,k)
3,k

o
,R3, t̄3,

�
d̄3,k

 

Figure 2: Overview of the different steps of our algorithm

of our algorithm is a set of canonically oriented planes, to-
gether with the reconstructed camera poses and a sparse set
of back-projected feature points. This information can be
used for realistic patch-based reconstruction, such as the
one shown in Fig. 1. Our algorithm takes around a second
(end-to-end) per image on a GPU-enabled computer. In our
experiments, it produced camera trajectories comparable to
the state of the art, with superior geometric reconstruction.

The main contribution of this paper is a novel approach
for using planar primitives when reconstructing structure
and motion in a Manhattan world. We propose new meth-
ods for regressing motion vectors, recovering relative scale,
and determining chains of matching planar structures in a
sequence, all of whom exploit the strong MW constraints.
In addition, we propose a new bundle adjustment procedure
that uses planar (rather than point) primitives.

This paper is organized as follows . After surveying the
related work in the next section, we present our approach
for multi-planar segmentation and motion recovery from
points matched across two images in Sec. 3. This builds
on prior work by Saurer et al. [30] and Kim and Man-
duchi [15]. The extension to image sequence analysis is
presented in Sec. 4. This comprises recovering the rela-
tive scale at each frame, creating consistent chains of match
clusters, and Bundle Adjustment using our novel formula-
tion using planar primitives. Comparative experiments are
presented in Sec. 5. Sec. 6 has the conclusions. A general
overview of the system components is shown in Fig. 2

2. Related Work

SfM and visual SLAM algorithms can be roughly di-
vided in three categories: those that match specific features
across images (typically points, e.g. [16, 26, 25], or lines,
e.g. [14, 24]); those that use direct image alignment to track
the camera pose (e.g. [6]); and those that use a volumetric
representation of space (e.g. [27]). Some works explicitly
represent the presence of planes [32, 3, 21, 40, 8, 12]. While
planar fitting is relatively simple when 3-D data (from a

RGB-D camera) is available [33, 19, 13], plane tracking is
also possible using regular monocular cameras. For exam-
ple, ORB-SLAM [26] includes a “model selection” com-
ponent that decides whether the scene is planar; in this
case, an homography is more effective at describing view
changes than the associated epipolar geometry. π-Match
[29] computes planar structures from two views. The cam-
era pose is tracked from the associated homographies, and
relative scale between subsequent view pairs is recovered
from point triangulation. Pop-up SLAM [38] detects the
extent of the visible ground plane (floor) for each image us-
ing a convolutional network [37], and uses this information
to extract the visible vertical planes. Planes are represented
using the minimal representation proposed in [13], and op-
timization relies on the factor graph of visibility, also intro-
duced in [13]. Point-based LSD SLAM is incorporated [6]
to provide the necessary odometry information. Instead of
optimizing 3D points, [40] refines positions of the feature
points and decrease the loss defined for each pair of frames
using homographies. Each homography model is found by
a simple RANSAC procedure and its inliers points are iter-
atively updated during its bundle adjustment.

3. Multi-planar Fitting from Two Views
3.1. Manhattan-constrained Homography Compu-

tation

Saurer et al. [30] introduced the concept of con-
strained homographies for weak Manhattan World scenes
(i.e. scenes that contain horizontal planes and vertical
planes, where the latter are not necessarily mutually paral-
lel or orthogonal). In the more restrictive Manhattan World
case (all visible planes either orthogonal or parallel to one
another), the homography H relating two images of the
same plane has three (rather than eight) degrees of freedom.
This can be seen by writing the canonical homography de-
composition [11]:

H = K

(
R +

1

d
tnT

)
K−1 (1)
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where K is the intrinsic parameters matrix, R represents the
rotation of the camera between the two views, d is the dis-
tance between the plane and the first camera position, t is
the camera translation, defined with respect to the first cam-
era frame, and n is the plane unit-norm normal. One useful
characteristic of Manhattan wold scenes is that the rotation
aligning the camera with the canonical Manhattan orien-
tation (i.e., with axes mutually parallel to the three planes
normals) can be computed from the three vanishing points
[17]. This in turns provides a convenient way to estimate
R.

Let nr represent the one-hot 3-vector with its r-th entry
equal to 1 while the other entries are 0. In the canonical
Manhattan orientation, the plane normal n must be aligned
with nr for some r. This defines a constraint on the homog-
raphy induced by the plane. For example, for r=1,

H1 = KRK−1 + K
[

t
d 0 0

]
K−1 (2)

Hence, computing an homography from two images of a
plane with known orientation only requires solving for the
three entries of t/d (note that we assume that K is known
from calibration, and that R is computed from vanishing
points estimation). This can be done, for example, using a
modified version of the DLT algorithm [11], starting from a
set of matching points identified in the two images.

One advantage of using constrained homographies is that
they can be computed from a small number of matches.
While four matches are necessary in general, for the con-
strained case we can use minimal sets of just two matches1.
This is particularly important when using random sampling
methods (e.g. RANSAC) for multi-planar estimation, as
discussed next.

3.2. Manhattan-constrained Multi-Planar Cluster-
ing

When multiple planar structures are visible in the im-
age, a (constrained) homography can be computed for each
such structure, assuming that the point matches across the
two images have been properly clustered. Joint clustering
and homography computation can be done using sequen-
tial RANSAC or its variants [36, 41, 18, 28]. In partic-
ular, T-linkage [23] has been shown to generate reliable
multi-planar segmentations. T-linkage, like its predeces-
sor, J-linkage [35], starts from a large number of randomly
sampled minimal matches sets, each of which determines
its own planar model (hypothesis) by homography fitting.
Each match is assigned a distance value to each planar
model (e.g., the squared residual after application of the cor-
responding homography). The matches that are at a distance
less than a threshold ε to a certain planar model (inliers)

1In fact, one could potentially compute the constrained homography
with a single match, using a method similar to [30].

form the consensus set of this model. Since the planar mod-
els are computed from a large number of randomly sampled
minimal sets, many of these models should be expected to
be similar to one another, meaning that their consensus sets
are likely to overlap. T-linkage performs aggregative clus-
tering of matches in such a way that all matches in a cluster
support the same set of planar models, i.e., they are all in the
intersection of the consensus sets of these models. Clusters
are aggregated using a criterion (Jaccard distance of their
preference sets [35] or Tanimoto distance of their preference
functions [23]) that encourages clusters to explain a variety
of models, rather than allocate one cluster per model.

Kim and Manduchi [15] proposed an extension to the
T-linkage algorithm that accounts for the reduced degree
of freedom of the homographies to be computed. Mini-
mal sets of two matches are sampled. Each such set deter-
mines one plane for each canonical direction (homographies
H1,H2,H3). Then, for each canonical direction, agglom-
erative clustering of matches is conducted using T-linkage.
A number of variations of the original T-linkage algorithm
have proven to be effective:

Visibility constraint. The image of a plane with normal
nr cannot cross the vanishing line associated with that pla-
nar direction (i.e. the line formed by the vanishing points
associated with the other two directions). Hence, matches
containing points at either side of this vanishing line cannot
be placed in the same cluster.

Sample selection. In the initial phase of the algorithm, sets
of matches may be sampled so as to maximize the likeli-
hood that they come from the same planar structure in the
scene. This can be done by identifying (using orientation
maps [20] or other reasoning [15]) regions in one of the two
images that are likely to represent whole planar patches.
Then, rather than sampling minimal sets, the whole set of
matches within each such region could be used to generate
individual planar models. This procedure has shown to pro-
duce a small number of reliable planar hypotheses, enabling
considerable computational savings.

Final cluster aggregation. Due to inaccurate estimation
of vanishing points or camera parameters, or to poor lo-
calization of feature points, T-linkage often produces over-
segmented results. We apply a simple greedy procedure
of cluster aggregation after T-linkage clustering, by merg-
ing together clusters corresponding to planes with the same
normal direction, and with similar values of their scaled
distance. The scaled distance is the plane’s distance to the
camera, divided by the magnitude of the camera translation
(i.e., the inverse of the norm of the scaled translation vec-
tor t/d.) Given two candidate clusters to be merged, we
first make sure that each cluster has at least one point in the
consensus set of the planar model associated with the other
cluster. If this is the case, we merge the two clusters into
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one, and assign to it the model with the larger consensus
set.

3.3. Translation Vector Regression

Each cluster of point matches Cr(m,k)
m,k = {(xm,xm+1)}

(where m is the image pair index, k is the cluster index,
and r(m, k) identifies the canonical direction of the k-th
planar model) determines its own homography, defined by
the scaled translation vector tm,k/dm,k. Let us denote by
t̄m,k the unit-norm normalized translation, and by d̄m,k the
scaled distance as defined earlier. Since the actual cam-
era translation is unique, all unit vectors t̄m,k estimated for
the same image pair should be identical. We enforce this
constraint, and find a common unit-norm translation vec-
tor t̄m while simultaneously refining the planes’ location,
by solving the following constrained minimization problem
for each image pair:

min
t̄m,{d̄m,k}

∑

k

∑

(xm,xm+1)∈Cr(m,k)
m,k

(3)

‖EN
(
Hr(m,k)(Rm, t̄m, d̄m,k) x̃m

)
− xm+1‖2

s.t. ‖t̄m‖ = 1

where x̃ is the normalized homogeneous representation of
the 2-D point x, and EN is an operator that computes the
Euclidean normalization [7] of a homogeneous vector (di-
vides its entries by the last one) then removes the homoge-
neous part (last entry). Hr(R, t, d) is the constrained ho-
mography induced by camera rotation R and translation t
on the images of a plane with normal of nr, located at a
distance d from the first camera (see e.g. (2)).

Proper parameter initialization is important for conver-
gence to the correct solution. We noted in our experiments
that the translation vectors t̄m,k estimated for the planes that
are further away from the camera tend to be incorrect, due
to small parallax. This suggests initializing minimization
from a translation vector computed from a plane close to the
camera. In our experiments, we simply selected the plane
with the smallest value of the scaled distance d̄m,k.

4. Multi-frame Integration
4.1. Recovering Relative Scale

The translation vectors computed for each frame pair are
defined up to an unknown scale. To recover the relative
scale of each translation vector, we define a metric normal-
ized by the distance between the camera locations in the first
two frames (t0). Under this metric, the translation vectors
and plane distances are tm = σmt̄m and dm,k = σmd̄m,k,
respectively (as a reminder, m is the frame number and k
is the index of the cluster, which is associated with a plane

with normal nm,k). We can recover the sequence of scale
factors {σ1, σ2, . . . } by the recursion:

σ0 = 1 ; t0→0 = 0 ; d0,k = d̄0,k ; R0→0 = R0

R0→m = Rm−1R0→m−1

t0→m = t0→m−1 + σm−1R
T
0→m−1t̄m−1

dm,k = d0,k + (nm,k)T t0→m ; σm = F
(
{dm,k, d̄m,k}

)

In the equation above, t0→m represents the vector moving
the camera from its position at time 0 to time m, expressed
in the reference system of the first camera (m=0). R0→m

represents the camera orientation at time m with respect
to the camera frame at time 0. F is a function that re-
gresses the distances dm,k, estimated through propagation
dm,k = d0,k + (nk)T t0→m, against the measured scaled
distance d̄m,k. Note that, due to noise and accumulated er-
rors, the ratios dm,k/d̄m,k may not be identical for different
values of k. In our experiments, we obtained good results
by simply setting σm = dm,k/d̄m,k for the plane k closest
to the camera at time m (i.e. with minimum value of d̄m,k).
When a new plane of index k is identified at timem that was
not visible at time 0, we can set d0,k = dm,k−(nk)T t0→m.

4.2. Cluster Chain Determination

Determining chains of pairwise image matches is a crit-
ical step in classical SLAM algorithms [22], as it allows
one to associate a point in space with a number of feature
points detected over multiple images, and thus to compute
the reprojection error for a putative set of poses. In our case,
we are interested in not only finding match chains, but also
cluster chains, which identify the same planar model across
subsequent images. We need to ensure that two separate
planar models don’t get mistakenly merged into one, or that
the same model gets split in two.

Formally, the set of points matched across subsequent
pairs of the N acquired images can be represented as a di-
rected N -partite graph G, whose m-th partition contains
nodes associated with points detected in the m-th image.
Each node in them-th partition may be connected to at most
one node associated with a matching point in the previous
image (partition m-1) or in the next image (partition m+1).
Note that the image ordering implicitly defines an ordering
of the edges adjacent to a node. Since a point in an image
can be matched to only one point in the next/previous im-
age, both the indegree and the outdegree of any node in G
can be at most 1.

The line graph [10] of G, Ḡ, is the graph whose nodes are
the edges of G, and whose edges link the pairs of edges of G
that have a common endpoint. In practice, Ḡ represents the
set of point pairs, matched across subsequent images. We
assign a direction to each edge of Ḡ such that its endpoints
are ordered congruently to the associated edges in G. Note
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that Ḡ is (N − 1)-partite, and that its nodes have indegree
and outdegree equal to at most 1.

The clustering of matches described in Sec. 3.2 defines
a clustering of the nodes of Ḡ, which induces a new di-
rected graph GC as explained in the following. Each clus-
ter of nodes of Ḡ associated with the cluster of matches
Cr(m,k)
m,k defines one node of GC . This node inherits the in-

dex triplet (m, k, r) from the cluster. Two nodes (m, k1, r1)
and (m+1, k2, r2) of GC are connected if (1) r1=r2 (planes
with the same normal direction), and (2) any two nodes
from the corresponding clusters of Ḡ are connected. This
connection indicates that the planar models defined by the
two associated clusters are the same. However, geometric
inconsistencies (different planar models merging into one,
or the same model splitting in two) may occur at nodes of
GC with indegree or outdegree larger than 1. To deal with
these situations, we first define a weight on the edge link-
ing two nodes (m, k1, r) and (m + 1, k2, r) of GC based
on a measure of similarity between Eout, the set of outgo-
ing edges from the nodes of Ḡ in Crm,k1

, and E in, the set of
ingoing edges to the nodes of Ḡ in Crm+1,k2

. This weight
is equal to their Jaccard distance (intersection over union:
‖Eout ∩E in‖/‖Eout ∪E in‖); it rewards consistency of con-
nections in Ḡ. Then, for each node of GC with indegree
(outdegree) larger than 1, we prune off all incoming (outgo-
ing) edges except for the one with maximum weight. This
in turn induces a pruning in Ḡ: any edge linking two nodes
of Ḡ associated with disconnected nodes of GC is pruned
off. After this operation, each maximal paths of GC (clus-
ter chain) identifies a unique plane. Consequently, any path
of the pruned Ḡ is formed by nodes (point pairs matched
across subsequent images) that are all associated with the
same plane in the scene.

To this simple procedure, we added two twists:

Single-frame gap filling. We allow for propagation of a
planar model through time even when, for whatever reason,
a cluster was not produced at one frame pair. We do this
by allowing nodes in the m-th partition of Ḡ with incoming
and outgoing degree of 1 that do not belong to any cluster
to inherit the clustering from the (m-1)-th partition. More
precisely, let Nm be the set formed by the nodes whose ad-
jacent node in the (m-1)-th and in the (m+1)-th partition are
associated with clusters with the same plane normal direc-
tion. All nodes in Nm adjacent to nodes in the same cluster
in the (m-1)-th partition are assigned to a new cluster with
the same plane normal r, before generation of GC and prun-
ing. If, however, this newly created cluster ends up being
disconnected from the cluster in the (m+1)-th partition (be-
cause of pruning in GC), its nodes are removed from further
consideration.

Ground plane. We use the algorithm of [37] to extract, in
each image, a region of pixels corresponding to the ground

plane. Points in the ground plane region are treated sepa-
rately than other points. They are matched across subse-
quent frames, but are never matched with points from out-
side the ground region. All points in this region are assigned
to the same “ground plane” cluster. Unlike [37], we don’t
use the boundary of the ground plane region to identify ver-
tical planes; rather, ground plane information is relied upon
to build a long and consistent cluster chain. This is very
helpful for maintaining odometry in the case of discontinu-
ous cluster chains from the side walls.

4.3. Plane-Constrained Bundle Adjustment

After cluster chain construction, the following informa-
tion is available:

• A set of K planar structures, defined by their one-hot
normal vectors (nk) and distances to the camera at time
0 (d0,k).

• A set of image points xk
m,i, where the i-th point in the

m-th frame has been associated with the k-th plane.

• A set of matched point chains Mk
j =

(xk
m,i1

,xk
m+1,i2

, . . . ) that correspond to the max-
imal paths in the pruned graph Ḡ. EachMk

j represents
a single point pk

j in space, belonging to the k-th plane,
expressed in terms of its image projections.

• A set (t0→m) of camera locations, and a set (R0→m)
of camera rotations, defined with respect to the refer-
ence frame of the first camera.

• A set of identical intrinsic camera matrices (Km).

Bundle adjustment (BA) modifies a vector of model param-
eters (normally, the set of 3-D points, camera poses, and
possibly intrinsic parameters) with the goal to ensure that
observations are consistent with the model under an appro-
priate metric. Unlike typical BA, we do not attempt to op-
timize the location of individuals 3-D points. Rather, we
modify the location (but not the orientation) of theK planes
to which these points belong.

An image point xk
m,i ∈ Mk

j associated with the plane
(nk, d0,k) defines a 3-D point by the intersection of the line
of sight through the xk

m,i in the m-th camera and the plane.
In the reference frame of the first camera, this point can be
expressed as:

pk
j,(m,i) = RT

0→m

(
dm,k K−1

m x̃k
m,i

nT
kK
−1
m x̃k

m,i

− t0→m

)
(4)

In the equation above, dm,k = d0,k + (nk)T t0→m is the
distance of the k-th plane to the m-th camera location.
K−1

m x̃k
m,i represents the line of sight through the pixel, ex-

pressed in terms of the m-th camera frame.

620

Authorized licensed use limited to: GOOGLE. Downloaded on April 18,2021 at 07:48:37 UTC from IEEE Xplore.  Restrictions apply. 



(nk, d0,k)

pk
j,(m,i0)

pk
j,(m+1,i1)

pk
j,(m+2,i2)

p̄k
j

x̄k
m+2,j

x̄k
m+1,j

x̄k
m,j

xk
m+2,i2

xk
m+1,i1

xk
m,i0

ek
m,i0

ek
m+1,i1

e
k
m+2,i2

Rm, t0!m

Rm+1, t0!m+1

Rm+2, t0!m+2

Figure 3: Computation of the reprojecton error for Bundle
Adjustment (Sec. 4.3)

Ideally, the lines of sight through all pixels inMk
j should

intersect at the same point, pk
j , in the k-th plane. In practice,

some amount of dispersion of the points {pk
j,(m,i)} should

be expected. Our BA procedure is designed to minimize a
measure of such dispersion, defined as follow (see Fig. 3).
We first compute the mean over the indices (m, i) in Mk

j

of the back-projected points {pk
j,(m,i)}. We then reproject

this mean point, p̄k
j , onto the individual cameras at their

estimated poses, obtaining:

x̄k
m,j = EN

(
Km(R0→mp̄k

j + t0→m)
)

(5)

Finally, we compute the reprojection errors ekm,i = x̄k
m,j −

xk
m,i for all xk

m,i ∈ Mk
j . We minimize, over camera poses

and plane locations (and, optionally, camera focal lengths),
the norm of ekm,i as measured by the Huber loss, summed
over all planes and all matched point chains.

It is instructive to compare our error criterion with the
criterion used by typical reconstruction algorithms that
store and optimize individual 3-D point locations. These
algorithms reproject the 3-D points onto the cameras and
compute the difference with the locations of the associated
point features. The position of all 3-D points is adjusted
at each iteration. We too produce individual 3-D point
locations in output (in the form of backprojected points
p̄k
j ), however, we only optimize the position of the visible

planes. Much fewer parameters are involved (as there are
typically few planes visible), hence computational savings
are achieved. More importantly, the resulting 3-D points are
guaranteed to lie on the detected planes. This is very im-
portant when planar reconstruction is desired. While planes
could be fitted post-facto to a 3-D point cloud, our algorithm
naturally produces the planar structures containing the 3-D
points. This is a critical difference with respect to exist-
ing algorithms for bundle adjustment with plane constraints
(e.g. [21, 40]). Even while enforcing planar constraints,
these algorithms try to estimate either individual 3-D points
or 2-D observations, resulting in system with many more

variables to optimize compared to ours.
We also found it beneficial to apply a simple cluster

merging procedure at the end of BA. Parallel planes that are
closer than a certain threshold are merged into one (along
with the associated match clusters), unless they are seen at
very different times (i.e., there is a large gap between the
last time the first plane is seen and the first time the second
plane is seen). This operation is repeated greedily until no
more planes can be merged. Then, BA is run again on the
merged data.

5. Implementation and Experiments

5.1. Implementation Details

Vanishing points detection. Vanishing points are com-
puted using the technique of [34] on line segments detected
by the LSD algorithm [9]. Following [15], line segments
with length of 20 pixels or more are clustered using T-
linkage [23] (implemented on GPU). A candidate set of van-
ishing points is found, which is then refined by minimizing
a form that penalizes geometric discrepancies.

Multi-planar clustering. SIFT features are matched across
subsequent frames, then plane-constrained T-linkage (im-
plemented on GPU) is run starting from non-minimal sets
of matches identified using the region-based sample selec-
tion scheme of [15].

Non-linear minimization. Minimization of (3) as well as
of the reprojection errors with Huber loss (Sec. 4.3) is ac-
complished using the “Schur complement trick” [4] as im-
plemented by the Ceres solver [2] .

Bundle Adjustment sequence. We first run a round of
BA optimizing only plane locations and camera locations.
Then, the plane merging procedure described at the end of
Sec. 4.3 is applied. Finally, another round of BA is run, this
time optimizing all parameters (plane locations, camera lo-
cations, camera rotation, and optionally focal lengths).

Visualization. The algorithm produces in output a set of
(infinite) planes, as well as a number of 3-D points lo-
cated on these planes. In order to visualize the results,
we generate, for each plane, minimal rectangular patches
aligned with the Manhattan canonical frame containing all
3-D points identified on the plane. Texture is then projected
on these patches from the images, using camera pose infor-
mation.

Processing times, averaged over 100 runs (20 runs for each
of five 20-image-sequence) and divided by task, are shown
in Tab. 1. The code ran on a GPU-enabled computer (only
vanishing point detection and multi-planar clustering were
optimized for GPU), equipped with Intel core i-7 6700 CPU
and NVidia GTX 1080 GPU.
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SIFT detection + matching 185 ms
Vanishing points detection 223 ms
CNN ground segmentation 22 ms

Multi-planar clustering 322 ms
Translation vector regression 20 ms

Cluster chain computation 30 ms
Bundle Adjustment (focal length fixed) 135 ms

Bundle Adjustment (focal length optimized) 500 ms
Total (focal length fixed) 937 ms

Total (focal length optimized) 1,302 ms

Table 1: Average processing time per frame.

Figure 4: Bird-eye view of reconstructed points from the
Corridor 1 sequence. Left: our algorithm (points in differ-
ent detected planes are shown with different color). Center:
ORB-SLAM [26]. Right: SfM Revisited [31]. Note that the
sky blue and cinnamon points in our result represent planar
surface induced by frontal surfaces of trashcan and printer.

Figure 5: 3-D textured rendering of one of the walls of the
reconstructed Corridor 1 scene.

5.2. Experiments

We collected a number of sequences of corridors in our
buildings using an iPhone 6 (1024 × 768 pixels). Each se-
quence contains 20 images, which were taken by hand at

each step of walking approximately 0.4 meters of distance
from each other. Our reconstructions have been computed
without optimization of the camera’s focal length, which
is precomputed with a checkerboard as introduced in [39].
We noticed that optimizing the focal length did not improve
the reconstruction results noticeably, while using more pro-
cessing time (see Table 1). We show reconstruction results
(together with the camera poses) for two scenes (Corridor
1 and 2) in Figs. 4 and 6 as bird-eye views of the 3-D
points, using different colors for points belonging to differ-
ent detected planes (Note that points belonging to the hor-
izontal planes were removed from our result, for the clear
visualization). For each scene, we also show the result us-
ing the open source implementation2 of the ORB-SLAM
algorithm [26], as well as the result using the open source
implementation3 of the “SfM Revisited” algorithm of [31].
The reconstructed points are shown on top of the floor plan,
which was manually adjusted in all three cases to best fit
the points. In addition, we show a textured 3-D rendering
of the planar patches produced by our system for Corridor
1 and 2 in Figs. 5 and 7. Also, Fig. 8 shows the comparison
of 3-D textured renderings between our algorithm and SfM
Revisited. Different from the point-based reconstruction,
our algorithm produced the dense reconstruction even for
the regions without textures if such regions are in between
the detected feature points on the same wall.

The reconstructed path is very similar for all three algo-
rithms, except for SfM Revisited in the Corridor 2 scene.
The most noticeable difference is in the quality of the re-
constructed points, which are clearly more sparser in the
other two general-purpose algorithms than in ours. The 3-
D rendering is particularly impressive considering few in-
put images, and insufficient feature points, which caused
by the indoor environment, enabling walk-through visual-
ization of the reconstructed scenes. The 3-D rendering also
highlights several reconstruction errors, which may be im-
puted to incorrect relative scale recovery (resulting in planes
with inaccurate location), mismatches (which are amplified
by our simple planar patch extrapolation algorithm, gener-
ating “ghost” patches), and incorrect camera rotation (re-
sulting in inaccurate image warping, e.g. in correspondence
to the large door in the left half of Fig. 5.)

6. Conclusions

We have introduced a technique for motion recovery
and surface reconstruction that makes use of the Manhat-
tan World geometry at every step of the way. Our approach
relies on pairwise matching of feature points, but repre-
sents geometric primitives in terms of planes. This enables
a novel formulation of Bundle Adjustment that optimizes

2https://github.com/raulmur/ORB_SLAM2
3https://github.com/colmap/colmap
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Figure 6: Bird-eye view of reconstructed points from the
Corridor 2 sequence. See caption of Fig. 4

Figure 7: 3-D textured rendering of one of the walls of the
reconstructed Corridor 2 scene.

(a) (b)

Figure 8: 3-D textured renderings of the reconstructed Cor-
ridor 3 scene. (a) our algorithm. (b) SfM Revisited [31]
with dense reconstruction option turned on.

plane locations, rather than point locations. The result is
expressed in terms of planar structures, a natural represen-
tation for indoor scenes.

While we have achieved good results in our experiments,
several situations may hamper the quality of reconstruction.
First of all, if the scene geometry does not comply with
the MW assumption, multiple system components will fail.
However, extension of our approach to the less restrictive
weak MW geometry is possible, which would expand its
domain of applicability. Our system relies on the presence
of point features that must be matched across images. As
with other feature-based approaches, large textureless ar-
eas, as well as multiple specularities, can cause it to fail.
Finally, our simple approach for patch-based visualization

of the system output, as shown in our figures, is unable
to deal with large textureless areas, even when these areas
are perfectly modeled by the planes estimated by our algo-
rithm. Improved visualization could be obtained by com-
bining image-based segmentation with the geometric infor-
mation produced by our system.

Our algorithm has shown very promising results in rel-
atively short sequences with a few dozen images. Further
work will be needed to evaluate its performances in very
long data sets (including loop closure), as well as in situa-
tions with multiple non-planar objects.
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